Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons
نویسندگان
چکیده
Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6-/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wlds and Sarm1-/- mice, preserved axons in DR6-/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration.
منابع مشابه
Microarray and qPCR Analyses of Wallerian Degeneration in Rat Sciatic Nerves
Wallerian degeneration occurs immediately following injury to mammal peripheral nerves. To better understand the molecular events occurring during Wallerian degeneration, a rat model of sciatic nerve transection was used to assess differentially expressed genes at 0.5, 1, 6, 12, 24 h, 4 days, 1, 2, 3, and 4 weeks post nerve injury (PNI). Hierarchical clustering, Euclidean distance matrix, and p...
متن کاملdSarm/Sarm1 is required for activation of an injury-induced axon death pathway.
Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll...
متن کاملInvolvement of the Ubiquitin-Proteasome System in the Early Stages of Wallerian Degeneration
Local axon degeneration is a common pathological feature of many neurodegenerative diseases and peripheral neuropathies. While it is believed to operate with an apoptosis-independent molecular program, the underlying molecular mechanisms are largely unknown. In this study, we used the degeneration of transected axons, termed "Wallerian degeneration," as a model to examine the possible involveme...
متن کاملQuantitative and qualitative analysis of Wallerian degeneration using restricted axonal labelling in YFP-H mice.
We investigated the usefulness of YFP-H transgenic mice [Neuron 28 (2000) 41] which express yellow fluorescent protein (YFP) in a restricted subset of neurons to study Wallerian degeneration in the PNS. Quantification of YFP positive axons and myelin basic protein (MBP) immunocytochemistry revealed that YFP was randomly distributed to approximately 3% of myelinated motor and sensory fibres. Axo...
متن کاملMechanisms of axonal spheroid formation in central nervous system Wallerian degeneration.
Wallerian degeneration of the CNS is accompanied by axonal dystrophy or swelling. To understand the mechanisms by which swellings arise, we studied their spatiotemporal dynamics, ultrastructure, composition, and the conditions that affect their formation in vivo and ex vivo. In contrast to peripheral nerve axons, lesioned optic nerve (ON) axons in vivo developed focal swellings asynchronously w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 27 شماره
صفحات -
تاریخ انتشار 2017